Category Archives: Tutorials

Ten Python Development Skills: A SUPER-practical Tutorial

By Pawal Jain

Every now and again, when I learn about a new feature in Python, or I notice that a few others are unaware of a feature, I make a note of it.

Over the last few weeks, there have been a few interesting features that I recently learned about, or realized others — on Stack Overflow

Here are ten neat Python development tricks some I’m sure you haven’t seen before. And a quick look at a few of these features, and a rundown of each.

Note: Codes are shown as images in this story. Further, you will get GitHub Readme link at the end to do experiments further 🤗

01. How to view source code in the running state?

Looking at the source code of the function, we usually use the IDE to complete.

For example, in PyCharm, you can use Ctrl + mouse to enter the source code of the function.

What if there is no IDE?

  • When we want to use a function, how do we know which parameters this function needs to receive?
  • When we have problems when using functions, how to troubleshoot the problem by reading the source code?

At this time, we can use inspect instead of IDE to help you accomplish these things

Image for post

inspect.getsource: Return the text of the source code for an object.

Image for post

The inspect module provides several useful functions to help get information about live objects such as modules, classes, methods, functions, tracebacks, frame objects, and code objects

Four main kinds of services provided by this module:

  • Type checking,
  • Getting source code,
  • Inspecting classes and functions
  • Examining the interpreter stack.

02. The fastest way to view the package path

When you use import to import a package or module, Python will look in some directories, and these directories have a priority order, normally we will use sys.path to view.

Image for post

Is there a faster way?

Here I want to introduce a more convenient method than the above, one line command can be solved

Image for post

From the output, you can find that the path of this column will be more complete than sys.path, which contains the directory of the user environment.

03. Write the nested for a loop as a single line

We often use the following nested for loop code

Image for post

Here are just three for loops, in actual coding, there may be more layers.

Such code is poorly readable, and people do not want to write it, and there is a better way to write it.

Here I introduce a commonly used writing method, using the itertools library to achieve a more elegant and readable code.

Image for post

04. How to use the print output log

Many people like to use print to debug code and record the running process of the program.

However, the print will only output the content to the terminal, and cannot be persisted to the log file, which is not conducive to troubleshooting.

If you are keen to use print to debug code (although this is not the best practice), record the process of running the program, then the print usage described below may be useful to you.

Print it as a function in Python 3, because it can receive more parameters, so the function itself becomes more powerful

code shown as below:

Image for post

05. How to quickly calculate the function running time

Calculate the running time of a function, you might do it like this

Image for post

You see you wrote a few lines of code to calculate the running time of the function.

Is there a way to calculate this running time more conveniently? Yes by using a built-in module called timeit

Use it with just one line of code

Image for post

The results are as follows


06. Use the built-in caching mechanism to improve efficiency

Caching is a method of storing quantitative data to meet the needs of subsequent acquisitions, and is designed to speed up data acquisition.

The data generation process may require operations such as calculation, regularization, and remote acquisition. If the same piece of data needs to be used multiple times, it will be a waste of time to regenerate each time.

Therefore, if the data obtained by operations such as computing or remote request is cached, the subsequent data acquisition requirements will be accelerated.

To achieve this requirement, Python 3.2+ provides us with a mechanism that can be easily implemented without requiring you to write such a logic code.

This mechanism is implemented in the lru_cache decorator in the functool module.

Image for post

Parameter interpretation:

  • maxsize: how many results of this function call can be cached at most, if None, there is no limit, when set to a power of 2, the performance is the best
  • typed: If True, calls of different parameter types will be cached separately.

for example

Image for post

The output is as follows, you can see that the second call does not execute the function body, but directly returns the result in the cache

calculating: 1 + 2
calculating: 2 + 3

The following is the classic Fibonacci sequence when you specify larger n, there will be a lot of repeated calculations

Image for post

The timeit introduced in point 6 can now be used to test how much efficiency can be improved.

Without lru_cache, the running time is 31 seconds

Image for post

After using lru_cache, the running speed is too fast, so I adjusted the value of n from 30 to 500, but even so, the running time is only 0.0004 seconds. The increase in speed is very significant.

Image for post

07. Tips for executing code before the program exits

Using the built-in module atexit, you can easily register and exit functions.

Wherever you cause the program to crash, it will execute those functions that you have registered. Examples are as follows

Image for post

The results are as follows:

Image for post

If the clean() function has parameters, you can call atexit.register (clean_1parameter 1parameter 2parameter 3=’xxx’) without using decorators.

Maybe you have other ways to deal with this kind of demand, but it is more elegant and convenient than not using atexit, and it is easy to extend.

But using atexit still has some limitations, such as:

  • If the program is killed by a system signal that you have not processed, the registered function cannot be executed normally.
  • If a serious Python internal error occurs, the function you registered cannot be executed normally.
  • If you call it manually os._exit(), the function you registered cannot be executed normally.

08. How to turn off the exception association context?

When you are handling an exception, due to improper handling or other problems, when another exception is thrown, the exception thrown out will also carry the original exception information.

Read it again and you will surely understand it now 🙂

Just like this.

Image for post

You can see two exception messages from the output

Image for post

If an exception is thrown in an exception handler or finally block, the exception mechanism will implicitly work by default to attach the previous exception as the __context__ attribute of the new exception.

This is the automatic correlation exception context that Python enables by default.

If you want to control this context yourself, you can add a from keyword (from will have a limitation that the second expression must be another exception class or instance.) to indicate which exception caused your new exception.

Image for post

The output is as follows

Image for post

Of course, you can also use the with_traceback() method to set the __context__ attribute for exceptions, which can also display exception information better in the traceback.

Image for post

Finally, if I want to completely turn off this mechanism of automatically associating exception contexts? what else can we do?

Can be used raise...from None, from the following example, there is no original exception

Image for post

09. Implement defer-like delayed calls

There is a mechanism for delaying calls in Golang. The keyword is defer, as shown below

Image for post

The call of myfunc will be completed before the function returns, even if you write the call of myfunc on the first line of the function, this is the delayed call. The output is as follows,


So is there such a mechanism in Python?

Of course, there are, but it is not as simple as Golang.

We can use the Python context managers to achieve this effect

Image for post

The output is as follows


10. How to stream read large files

Using with…open… we can read data from a file, which is a very familiar operation for all Python devs.

But if you use it improperly, it will also cause great trouble.

For example, when you use the read function, Python will load the contents of the file into memory all at once. If the file has 10 GB or more, then the memory that your computer will consume is very huge.

Image for post

For this problem, you may think of using readline as a generator to return line by line.

Image for post

But if the content of this file is in one line, 10 GB per line you will still read all the contents at once.

The most elegant solution is to use the read method to specify that only the fixed size of the content is read at a time. For example, in the following code, only 8kb is returned at a time.

Image for post

The above code has no problem in function, but the code still looks a bit bloated.

With partial function and iter function, you can optimize the code like this

Image for post

To Sum up

  • We can use inspect to view source code in the running state
  • itertools.product can be used in case of nested loops
  • Use timeit module over time to calculate running time of a function or piece of code
  • Use functool.lru_cache to speed up your code. It’s designed to speed up data acquisition
  • Use atexit module to register your functions so that wherever you cause the program to crash, it will execute those functions that you have registered
  • Read a large file by breaking it into fixed-size blocks

That’s it! Did you learn anything new? Or do you have another trick that you want to share? Please let me know in the comments!

Here is the link for GitHub Readmeto view and analyze each trick

Yeah! now enjoy just like minions 😋, we made it to the end. Hope you learn something new and have some basic idea about these efficient development tricks

Image for post
Source: Giphy

Thanks for reading, We hope you’ve fuel up your python development skill and knowledge. To See more tutorials like this, Support by dropping your comments, likes and share with friends.

Stay connected and see you around👋🏻